国产精品亚洲一区二区麻豆_久久精品国产亚洲AV网站_亚洲成人网在线观看_久久精品国产亚洲夜色AV网站

導航:全球石油化工網 >> 資訊頻道 >> 技術裝備

殼牌提高地震成像質量以助未來勘探成功(英)

[加入收藏][字號: ] [時間:2009-01-15 E&P 關注度:0]
摘要:簡介:由于一些原因,殼牌在加拿大富特希爾斯地區獲取的地震成像質量非常糟糕。不斷提升地震成像的質量對殼牌未來在該地區的勘探獲取成功非常關鍵。 Improving seismic imaging in Alberta Continu...
簡介:由于一些原因,殼牌在加拿大富特希爾斯地區獲取的地震成像質量非常糟糕。不斷提升地震成像的質量對殼牌未來在該地區的勘探獲取成功非常關鍵。

Improving seismic imaging in Alberta

Continuously improving the seismic image quality is key to Shell’s future exploration success in the Canadian Foothills. 


Schematic diagram of rays that have the same receiver and the same offset but a 180º difference in acquisition azimuth. Consequently, the recorded wavefields from the shots have experienced different near-surface effects.

Seismic data quality in the Canadian Foothills (Figure 1) is notoriously poor for a number of reasons. First, the rough topography, combined with limited access, often leads to sparse data acquisition that results in inadequate subsurface illumination. Second, the geology is complex with rapid changes in near-surface velocities caused by thrusting, modern and ancient fluvial systems, and buried karsting in the carbonates. These near-surface conditions give poor source and receiver coupling. The karsting creates considerable scattering and ground-roll effects of the seismic wavefield that mask the primary reflection energy. Further, thrust sheets carry thick low-velocity clastic sediments, often greater than .6 miles (1 km). The resulting boundary produces large ray-bending effects. When combined, these factors make seismic depth processing extremely challenging, and often it is difficult to produce an image that enables a consistent structural interpretation of a prospect.

A recent prestack depth migration (PSDM) project over a well-documented displacement transfer zone in the Brazeau Thrust, known locally as the “Swing-Back,” was able to provide an improved structural image of the Limestone gas field (Figure 2a). The imaging problems caused by the Swing-Back result from a dramatic change in the along-strike velocity field where more than 1.2 miles (2 km) of Paleozoic carbonates disappear across a near-vertical dip parallel fault and are replaced by Cretaceous clastics. To identify possible seismic processing issues, Shell reviewed the project and concluded that it was executed to the current best practices.

Nevertheless, the existing product failed to image the geology below the Swing-Back correctly; hence there was a business need to investigate new methodologies in the effort to improve the image. We focused on the practices of ignoring the azimuth information and applying static shifts to compensate for near-surface velocity variations, believing that this would give the largest improvement. The physical assumptions made in these two steps are likely not valid in mountainous areas with rapidly varying near-surface geology and will possibly introduce larger errors than higher-order effects like neglecting anisotropy in the velocity depth model.

Azimuthal data regularization

Compared to conventional marine acquisition, land 3-D acquisition geometries have the advantage of a wide-azimuth distribution, even though this information is typically disregarded during the PSDM workflow. In this study, we used the available azimuth information during the data regularization and the velocity model building. Usually, data regularization is carried out in the constant offset domain with a trace interpolation scheme (Figure 2b). In the case of wide-azimuth land data, traces with the same offset but quite different azimuth (Figure 3) are often used to construct missing traces. Because these traces may have largely different ray-paths, this approach frequently yields interpolated traces that are of unsatisfactory quality. To improve on the interpolation result, we needed to use input traces that are more comparable, which meant traces that have similar azimuth and offset. Using just three 60º azimuth ranges for trace interpolation resulted in a noticeable improvement in the PSDM quality, especially in the shallow section (Figure 2c). At the near-vertical Swing-Back, where the wavefield is particularly complex, this simple prestack interpolation is an improvement but is still sub-optimal and not able to correct image artifacts like migration swings. In the future, Shell hopes square migration methods will help to improve further on this result.

Near-surface velocity model

The limited near-offset sampling in the seismic acquisition and the seismic noise mean that conventional reflection seismic in the Canadian Foothills has a very poor velocity resolution from the surface down to 3.300 ft (1,000 m) depth. Hence, for most PSDM projects, the near-surface velocity model is populated with velocities, sometimes as high as 13,120 to 14,765 ft/s (4,000 to 4,500 m/s), derived for the same geological unit in deeper parts of the data. However, a vertical seismic profile (VSP) acquired in another area showed that velocities could be as low as 1,640 to 2,625 ft/s (500 to 800 m/s) in the weathering impacted layer down to around 60 ft (20 m) depth. Beyond the weathering layer, velocities increased rapidly to 4,920 to 6,562 ft/s (1,500 to 2,000m/s) at a depth of about 150 ft (50 m) where the geology is much more consolidated. Onwards to a depth of 1,970 ft (600 m), the velocity reached the level typically used as a background velocity. Using the information from the VSP velocity profile, it was decided to replace the constant 136,120 ft/s velocity in the shallow part of the model with a varying near-surface velocity model. This model was computed by Shell’s front-end contractor, CGGVeritas, via tomographic inversion of the first arrival picks. It was consistent with the conventional refraction statics solution apart from some smoothing. The resulting near-surface velocity field had large vertical and lateral variations (Figure 4). The range of velocities was similar to those observed by the VSP. 

By incorporating detailed near-surface velocities in the depth model, travel-time differences associated with the near-surface layer are accounted for in the ray-tracing during the PSDM. This allows for the large ray-bending and hence results in a more accurate positioning of the seismic energy. The inclusion of the near-surface model into the depth model also allowed us to compensate for the near-surface velocity effects in a dynamic way during the migration instead of just as static time shifts. Hence, the refraction statics applied for improved shot processing had to be removed prior to the PSDM. It should be noted that the migration also has to be carried out from the surface to minimize the effects of the rough topography on the image. The large image improvement obtained by this simple and fast procedure demonstrates that it can be important to include the strong gradient of the near-surface velocities into the depth model.

Azimuthal velocity model updating

During the testing of the azimuthal data regularization, we observed that the data quality differed depending on the azimuth. We capitalized on this observation by honoring the azimuth during the velocity-model updating via generating directional common-image gathers (CIGs) with 12 azimuth (0-360º) and 15 offset slots. A first analysis of the CIGs showed that the residual moveout (RMO) varied with azimuth, probably caused by illumination issues and, to a much lesser extent, by anisotropy. Furthermore, due to the non-reciprocal acquisition geometry and shot-receiver coupling problems, reciprocal azimuths actually had different RMO and data quality.

Consequently, we picked RMO for each azimuth range independently and used the resulting 12 RMO datasets with their according azimuth information in a joint isotropic travel-time inversion (TTI). In this way, the TTI posted the velocity update approximately back into the direction from where the data originated. Compared to a standard TTI just using a single azimuth, the resulting model was more stable (Figure 5). For this specific 3-D project, the velocity difference between azimuthal TTI and conventional offset TTI has been as large as 1,475 ft/s (450 m/s).

After migrating with the azimuthal TTI updated model, flatter CIGs containing more coherent signal were obtained (Figure 6b), and the according stack of the multi-azimuth updating shows an enhanced image.

Conclusions

The total image improvement obtained for the Swing-Back highlights the advantage of incorporating a near-surface velocity from tomographic inversion and using multi-azimuth information for the data regularization, the PSDM, and the velocity model building sequence. The new image was of sufficient quality to support Shell’s business decisions, but further refinements are necessary to drive additional exploration efforts. Least-squares migration and joint inversion of refraction and reflection data for the model building have great potential to provide additional seismic uplift, and Shell currently has both techniques under development in research. Moreover, after removing assumptions like static shifts that introduce errors of first order in the seismic processing, the data are now of sufficient quality to include higher-order effects, like anisotropy, into the depth model.
關鍵字: 地震 勘探 殼牌 
關于我們 | 會員服務 | 電子樣本 | 郵件營銷 | 網站地圖 | 誠聘英才 | 意見反饋
Copyright @ 2011 m.179ck.com Inc All Rights Reserved 全球石油化工網 版權所有 京ICP證080561號
国产精品亚洲一区二区麻豆_久久精品国产亚洲AV网站_亚洲成人网在线观看_久久精品国产亚洲夜色AV网站

<label id="un5f4"><meter id="un5f4"></meter></label>
  • <rt id="un5f4"><small id="un5f4"></small></rt>
    1. 伊人开心综合网| 欧美午夜电影在线观看 | 国产精品日韩精品| 99久久九九| 日本韩国在线不卡| 亚洲成av人电影| 国产精品9999| 亚洲精选在线| 国产免费一区| 国产一区二区日韩精品| 热re99久久精品国99热蜜月| 国产在线精品免费av| 日本一区二区三区四区在线观看 | 一区二区视频国产| 99re热视频精品| 男人添女荫道口女人有什么感觉| 久久一夜天堂av一区二区三区| 黄黄视频在线观看| 中文字幕 久热精品 视频在线| www国产黄色| 亚洲一区在线播放| 日本wwwwwww| 3d动漫精品啪啪1区2区免费| 国产又色又爽又高潮免费| 亚洲女人天堂av| 加勒比色老久久爱综合网| 欧美激情视频在线观看| 欧美粗暴jizz性欧美20| 国产高清自拍一区| 风流少妇一区二区| 欧美 日韩 激情| 午夜精品免费在线| 麻豆精品免费视频| 亚洲国产精品久久| 好吊妞国产欧美日韩免费观看网站| 欧美日韩不卡合集视频| 午夜精品999| 久久日韩精品| 国产日韩av一区| 久久久久久久久久毛片| 欧美一级理论性理论a| 日本免费一区二区视频| 欧美与黑人午夜性猛交久久久| 亚洲神马久久| 日本三级福利片| 亚洲高清不卡在线| 免费看日本黄色片| 欧美另类极品videosbest最新版本 | 色欧美片视频在线观看| 人妻大战黑人白浆狂泄| 亚洲一级黄色片| 五月精品视频| 欧美日韩综合久久| 综合自拍亚洲综合图不卡区| 中文字幕一区二区人妻在线不卡| 亚洲性xxxx| 欧美日韩三级| 国产亚洲精品成人av久久ww| 欧美一性一交| av免费观看久久| 91天堂素人约啪| 亚洲熟女一区二区三区| 亚洲天堂免费观看| 99精品在线| 亚洲欧美成人一区二区三区| 久久免费少妇高潮久久精品99| 亚洲性视频h| 一本一生久久a久久精品综合蜜| 国产精品亲子伦对白| 制服丝袜av在线| 国产一区二区三区在线观看网站 | 精品欧美一区二区久久久伦| 国产亚洲精品资源在线26u| 妖精视频一区二区| 久久伊人精品视频| 男人的天堂亚洲一区| 免费观看精品视频| 国产一区福利| 在线日韩av观看| 激情综合电影网| 欧美日韩视频免费在线观看| 亚洲风情在线资源站| 四虎精品免费视频| 狠狠操狠狠色综合网| 3d动漫一区二区三区在线观看| 日本欧美一二三区| 2021久久国产精品不只是精品| 亚洲天堂av网站| 久久91亚洲精品中文字幕| 激情综合色播激情啊| 91亚洲一区二区| 久久综合电影一区| 国产馆精品极品| 亚洲欧美视频在线播放| 26uuu亚洲伊人春色| www.欧美日韩| 天堂av免费在线| 国产精品久久久久久婷婷天堂| 久久久青草青青国产亚洲免观| 日本一级免费视频| 国产精品专区第二| 亚洲男人电影天堂| 加勒比色老久久爱综合网| 欧美国产二区| 欧美色图12p| 外国成人激情视频| 国产极品尤物在线| 亚洲图片在线综合| 国产伦精品一区二区三区免费迷 | 91网站视频在线观看| 亚洲精品成人无码| 成人性生交大片免费看小说 | 国产传媒欧美日韩成人| 欧美 变态 另类 人妖| 欧美一区第一页| 国产精品女主播在线观看| 日韩精品中文字幕一区二区 | sdde在线播放一区二区| 视色,视色影院,视色影库,视色网| 日韩一级二级三级精品视频| 亚洲作爱视频| 韩国三级在线播放| 国产成人高清激情视频在线观看 | 欧美揉bbbbb揉bbbbb| 日韩一区三区| 日本日本19xxxⅹhd乱影响| 亚洲欧美国产精品专区久久| 久久国产综合精品| www亚洲色图| 国产视频一区二区不卡| 欧美精品亚洲二区| 久久亚洲风情| 欧美做受喷浆在线观看| 成人国产精品一区二区| 色婷婷亚洲综合| 国产综合精品一区| 国产午夜在线一区二区三区| 国产欧美日韩精品专区| 色琪琪一区二区三区亚洲区| 在线日韩av| 99久久人妻精品免费二区| 亚洲xxxx3d| 欧美日韩久久久久久| 久久国产免费| 国产馆在线观看| 日韩中文一区| 在线日韩中文字幕| 欧美激情综合五月色丁香小说| 西野翔中文久久精品国产| 国产三区在线视频| 欧美一级淫片播放口| 富二代精品短视频| 国产欧美欧美| 国产精品.com| 精品国产91乱码一区二区三区| 青青草国产精品亚洲专区无| 一区二区三区在线观看免费视频| 欧美日韩一区在线观看视频| 亚洲免费电影在线观看| bt欧美亚洲午夜电影天堂| 精品视频在线你懂得| 男人靠女人免费视频网站| 欧美在线xxx| 色婷婷国产精品久久包臀 | 88av在线播放| 久久久久久久久一区二区| 夜夜嗨av一区二区三区免费区| 国产丝袜在线精品| 久久裸体网站| 老熟妇精品一区二区三区| 欧美精品一区二区三区四区五区| 亚洲日韩欧美视频| 国产精品美女久久久久久久| 亚洲色图二区| 日本少妇高潮喷水xxxxxxx| 亚洲精品久久区二区三区蜜桃臀 | 国产女人18毛片水真多成人如厕 | 91av福利视频| 日韩在线xxx| 国内成人精品一区| 一二三四社区欧美黄| 一区二区三区四区五区精品视频| 国产美女永久免费无遮挡| 亚洲精品一区二区三区av| 久久亚洲一区二区三区四区五区高| 亚洲欧洲中文日韩久久av乱码| 亚洲国产综合在线看不卡| 99国产精品免费| av网站大全免费| 国产精品久久久久久亚洲影视| 欧美一个色资源| 久久影院视频免费| 国内精品久久久久久久97牛牛| 99国产精品无码| 激情自拍一区| 91高清免费在线观看| 欧美午夜无遮挡| 日韩成人一区二区三区在线观看| 国产精品另类一区| 伊人久久大香线蕉综合热线| 97精品在线播放| 熟妇人妻va精品中文字幕| av免费精品一区二区三区| 中文字幕日韩精品有码视频| 亚洲国产综合91精品麻豆| 国产在线精品一区二区三区不卡| 青青视频一区二区| 亚洲av无码一区二区三区网址| 色综合色综合| 国产白袜脚足j棉袜在线观看| 性欧美大战久久久久久久免费观看| 欧美国产日韩中文字幕在线| 6080午夜不卡| 国产精品入口麻豆九色| 久久久久久穴| 成品人视频ww入口| 成人国产在线视频| www国产精品视频| 欧美在线不卡视频| 欧美激情在线一区二区三区| 久久久久久久高潮| 大片网站久久| 色成人综合网| 国内自拍偷拍视频| 日本丰满少妇xxxx| 欧美精品免费观看二区| 欧美中文字幕视频在线观看| 亚洲色图美腿丝袜| 欧美久久婷婷综合色| 综合婷婷亚洲小说| 丰满亚洲少妇av| 国产亚洲一区在线| 精品日韩一区| 国产精品一区二区美女视频免费看| 少妇性l交大片7724com| 日韩一级性生活片| 欧美色图亚洲自拍| 91欧美精品成人综合在线观看| 久久97久久97精品免视看 | 日韩第一页在线观看| 91嫩草视频在线观看| 91精品国产91久久久久久最新 | 国产97在线 | 亚洲| 日本一区二区高清视频| 亚洲va久久久噜噜噜| 91成人在线观看国产| 日韩视频免费大全中文字幕| 精品国产电影一区二区| 欧美视频在线一区二区三区 | 欧美一区二区三区爽爽爽| 蜜桃色一区二区三区| 中文字幕无码不卡免费视频| av在线观看地址| 大桥未久一区二区| 日韩一区不卡| 国产精品污www一区二区三区| 国产精品日韩在线| 2021国产精品视频| 欧美黄色www| 日韩综合视频在线观看| 亚洲欧美激情另类校园| 欧美一区二区播放| 欧美人狂配大交3d怪物一区| 色综合婷婷久久| 无吗不卡中文字幕| 亚洲五码中文字幕| 亚洲国产aⅴ成人精品无吗| 亚洲视频香蕉人妖| 日韩一区在线播放| 亚洲天堂a在线| 日韩毛片视频在线看| 国产午夜精品一区二区| 久久一区二区视频| 久久久久久9999| 国产日韩v精品一区二区| 欧美激情资源网| 亚洲人妖av一区二区| 亚洲免费观看高清完整版在线 | 欧美电影一区二区| 欧美日韩aaa| 欧美日韩免费高清一区色橹橹| 欧美午夜不卡视频| 91精品国产入口在线| 欧美人与性动xxxx| 日韩一区二区三区在线| 日韩一级免费观看| 日韩精品中文字幕视频在线| 精品中文视频在线| 亚洲欧美综合v| 播播国产欧美激情| 欧美精品电影在线| 国产成人一区二区| 91麻豆国产精品| 狠狠色综合欧美激情| 日韩av电影免费播放| 人人妻人人澡人人爽精品欧美一区| 精品一区二区亚洲| 欧美国产97人人爽人人喊| 亚洲国产成人私人影院tom| 国产精品视频看| 伊人色综合久久天天| 午夜精品福利一区二区三区蜜桃| 精品久久久久久中文字幕| 欧美亚洲综合色| 精品国产免费视频| 中文字幕亚洲图片| 午夜精品久久17c| 国产精品专区一| 久久99精品久久久久久三级 | 国产欧美精品久久久| 成人黄视频免费| 少妇特黄a一区二区三区| 日本黄网站色大片免费观看| 日本在线观看a| 久久久精品人妻一区二区三区| 国产高清自拍视频| 欧洲亚洲精品久久久久| 日韩欧美ww| 激情91久久| 精彩视频一区二区| 久久久久国产一区二区三区四区 | 亚洲国产综合自拍| 18禁免费观看网站| 手机在线播放av| 一级黄色片网址| jizz性欧美23| 国产精品大片| 国产a久久麻豆| 亚洲精品免费在线观看| 在线观看日韩高清av| 亚洲精品一区二区三区不| 欧美福利视频在线观看| 91丨九色丨国产| 中文字幕日韩精品久久| 男人的天堂日韩| 偷拍夫妻性生活| 超碰在线一区| 色一情一区二区三区| 精品中文字幕在线播放| 91成人福利社区| 欧美69视频| 成人性生交大片免费| 亚洲最新视频在线观看| 精品蜜桃在线看| 国模极品一区二区三区| 99国产在线视频| 国产美女永久无遮挡| 看全色黄大色黄女片18| 精品视频高潮| 视频一区免费在线观看| 国产精品无人区| 欧美一区二区女人| 午夜伦理精品一区| 中文字幕一区二区三区中文字幕 | 国产一区中文字幕| 亚洲天堂成人网| 亚洲а∨天堂久久精品喷水 | 五月天激情小说综合| 精品香蕉一区二区三区| 国产大片精品免费永久看nba| 欧美日韩综合网| 精品亚洲一区二区三区四区| 裸体武打性艳史| 欧美午夜影院| 国产日韩三级在线| 色88888久久久久久影院按摩| 国产一区二区精品丝袜| 亚洲综合自拍一区| 免费观看成人网| 三级影片在线看| 国产视频亚洲| 一区二区三区在线视频播放| 亚洲毛茸茸少妇高潮呻吟| 成人精品一区二区三区电影黑人 | 免费成人在线观看| 亚洲成a人v欧美综合天堂下载 | 久久综合九色| 亚洲一区二区高清| 日韩中文视频免费在线观看| 国产成人女人毛片视频在线| 国产区二区三区| 2023国产精华国产精品| 精品一区二区三区免费观看 | 久草视频这里只有精品| 亚洲av熟女国产一区二区性色| 999视频精品| 国产欧美日韩在线视频| 亚洲成人网av| 国产精品国产精品| 国产三级精品三级在线| 黑人久久a级毛片免费观看| 黑人巨大精品欧美一区| 91国模大尺度私拍在线视频| 国语自产在线不卡| 精品成在人线av无码免费看| 人妻久久一区二区| 美女视频网站黄色亚洲| 色www精品视频在线观看| 欧美亚洲在线播放| 久久久999免费视频|